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Among the model order reduction techniques, the Proper Generalized Decomposition (PGD) has shown its efficiency to solve a large 

number of engineering problems. In this communication, the PGD approach is applied to solve a multi-physics problem based on a 

magnetoelectric device.  
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I. INTRODUCTION 

o REDUCE the computation time of numerical models in the 

time or frequency domain, Model Order Reduction (MOR) 

methods have been developed and presented in the literature. 

These approaches have been mainly used to study a large 

number of devices in mechanics. In this field, the Proper 

Generalized Decomposition method has been largely studied 

[1][2]. In computational electromagnetics, the PGD approach 

has been extended to solve static or quasi-static problems [3][7]. 

The principle of the PGD method consists in expressing the 

solution by a sum of functions depending on each parameter of 

the problem, so-called modes. Each mode is determined by an 

iterative procedure and depends on the previous modes. In the 

case of systems of partial differential equations in the frequency 

domain, the PGD approach approximates the solution by a sum 

of functions separable in frequency and space. 

In this communication, we propose to apply the PGD approach 

with a magnetoelectric problem. The results obtained with the 

PGD model are compared in terms of accuracy and computation 

time with a classical approach. 

II. MAGNETOELECTRIC PROBLEM 

Let us consider a magnetoelectric problem based on a 2D 

sensor composed of magnetostrictive (MM) and piezoelectric 

(PZT) materials. An external harmonic magnetic field Hext is 

imposed. By neglecting the charge density  and the external 

forces, the system of equations to solve is 

 

0ρωdiv 2  uT  (1) 

0div D  (2) 

0 Hcurl  (3) 

 

with T the stress tensor, u the displacement, D the electric 

induction, H the magnetic field,  the mass density and  the 

angular frequency. The constitutive laws of the MM and PZT 

materials are  

 

BEST
tt eτc   (4) 

SED  τ ε   (5) 

SBH eν   (6) 

 

with S the strain tensor, E the electric field, c the stiffness tensor, 

e the magnetostrictive coefficients,  the piezoelectric 

coefficients,  the electric permittivity and  the magnetic 

reluctivity. To solve the problem, a formulation in term of 

potentials can be used. E and B are expressed such that E=-

grad v and B=curl A with v the electric potential and A the 

magnetic potential. The strain tensor S is given by S=1/2(grad 

u + gradt u). Then, we seek for the solutions v, A and u in the 

space domain D and in the angular frequency interval 

[min:max]. The quantities of interest are the voltage U between 

the two electrodes of the PZT layer and the maximal 

deformations of the sensor. 

 
Fig. 1. Magnetoelectric sensor 

III. PGD FORMULATION 

The PGD method consists in approximating the solutions by 

sums of separable functions in frequency and space. Then, v, A 

and u are approximated by separated forms of space and 

frequency functions,  
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with xD,  [min:max] and M the number of modes of the 

expansions. To apply the PGD approach, we consider a weak 

formulation on D[min:max] of (1), (2) and (3). Then, we have: 
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To compute the set of functions l

jR  and l

jS for j[1:M] and 

l={v, A, u}, an iterative enrichment approach is used. At the nth 
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iteration, the functions l

nR  and l

nS are expressed as a function 

of the previous functions l

iR  and l

iS  with i[1:n-1]. Two sets 

of equations deduced from (7), (8) and (9) are solved iteratively. 

In a first step, we assume that the functions 
l

nS with l={v, A, u} 

are known in order to calculate the functions 
l

nR . In a second 

step, the functions l

nS are recomputed with the known functions

l

nR . The two steps are repeated until convergence of all func-

tions
l

nR  and 
l

nS . 

IV. APPLICATION 

In term of application, we consider the device presented in Fig. 

1. The 2D mesh is composed of 3283 nodes and 6525 triangles. 

The frequency interval of simulation is fixed at [104;105]Hz 

with 401 equidistributed discrete values. The quantities of 

interest are the voltage between the two electrodes and the 

maximal deformation according to the axis y. Fig. 2 and 3 

present the evolutions of the voltage magnitude and of the 

maximal deformation versus the frequency obtained from a 

“classic” finite element model (reference) and from the PGD 

model for different number of modes. With a low number of 

modes, the waveform of the voltage magnitude versus the 

frequency is close to the reference, with M=2, the relative error 

is close to 0.1%. To obtain a good approximation of the 

maximal deformation, the number of modes must be greater. In 

our case, with M=13, we obtain a good approximation. In Fig. 

3, we can observe that the maximal deformations on the high 

frequencies are captured with a low number of modes. The 

number of modes must be increased to capture the low 

frequency maximal deformations. If the quantity of interest is 

the voltage between the two electrodes, the PGD gives a good 

approximation with M = 2. In this case, the speed up is 34 

versus the classical approach. To obtain mechanical 

deformations close to the references, the modes number of the  

PGD solutions must be greater than 15, the speed up is then 4.3. 

Fig. 4 gives the deformation of the structure at the resonance 

frequency obtained from the PGD with M=15. Fig. 5 presents 

the difference of the deformation at the resonance frequency 

obtained with the classical approach and the PGD 

approximation. The values of the difference are much lower 

compared to the mechanical deformation in Fig. 4. In term of 

perspective, the PGD will be applied with a magnetoelectric 

actuator coupled with an electric equation to take into account 

the supply.  

 

 
Fig. 2. Magnitude of the voltage versus the frequency. 

 

 
Fig. 3. Maximal deformation along y versus the frequency. 

 
Fig. 4.  Deformation of the structure at the resonance frequency obtained from 

the PGD (M=15). 

 
Fig. 5.  Difference of the deformation at the resonance frequency obtained 

from the reference and the PGD approximation. 
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